A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Strategy Serial

Reculte

Comments and future work

# A Parallel Implementation of Tensor Multiplication

Bryan Rasmussen

Los Alamos National Laboratory

30 November 2006

## Goals & requirements

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Strategy Serial Parallel

Results

Comments and future work

#### Goal

To develop a parallel version of tensor multiplication with reductions.

### Requirements

- At a minimum, multiply two rank-4 tensors with two reductions.
- Have potential for multiplying large tensors with applications in computational chemistry.
- Use memory efficiently.
- Scale well.

### Basic definition

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

#### Introduction

Strategy Serial Parallel

Results

• **Tensor:** Extension of the idea of a linear operator to multi-linear algebra setting.

 Useful for writing equations with respect to arbitrary coordinate systems—many applications.

Just as we may write a linear operator as a matrix (in finite-dimensional space),

$$A = \begin{pmatrix} A\mathbf{e}_1 & A\mathbf{e}_2 & \cdots & A\mathbf{e}_m \end{pmatrix},$$

we may also write tensors as multi-dimensional boxes of numbers. Number of dimensions of box = rank of tensor, e.g.,

rank-4 tensor:  $a_{ijkn}$ .

### Notation

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

#### Introduction

Strategy Serial Parallel

Results

Comments and future work Multiplication like an outer product.

$$c_{ijkmnp} = a_{ijk}b_{mnp}$$

Repeated indices  $\Rightarrow$  summation

$$c_{ijmn} = a_{ijk}b_{mnk} \qquad \Leftrightarrow \qquad c_{ijmn} = \sum_{k} a_{ijk}b_{mnk}.$$

Also known as tensor contraction, or reduction. In general, if we are multiplying  $c_{**...*} = a_{**...*}b_{**...*}$ ,

$$(Rank c) = (Rank a) + (Rank b) - (2 \times reductions).$$

### Notation examples

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

#### Introduction

Strategy Serial Parallel

Results

Comments and future work

Consider 3-D column vectors  $\mathbf{u}$ ,  $\mathbf{v}$ , and matrices A, B.

- Inner product:  $s = u_i v_i = \sum_{i=1}^3 u_i v_i = \mathbf{u}^T \mathbf{v}$
- Outer product:  $w_{ij} = u_i v_j$

$$w_{ij} = u_i v_j = \begin{pmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \\ u_2 v_1 & u_2 v_2 & u_2 v_3 \\ u_3 v_1 & u_3 v_2 & u_3 v_3 \end{pmatrix} = \mathbf{u} \mathbf{v}^T$$

• Matrix-vector multiplication:  $v_i = a_{ij}u_j$ 

$$v_i = a_{ij}u_j = \sum_{j=1}^3 a_{ij}v_j = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{pmatrix} = A\mathbf{u}$$

# Notation examples (continued)

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Strategy Serial Parallel

Results

Comments and future work • Matrix-matrix multiplication:  $c_{ik} = a_{ij}b_{jk}$ 

$$c_{ik} = a_{ij}b_{jk} = \sum_{j=1}^3 a_{ij}b_{jk} = AB =$$

$$\begin{pmatrix} \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} \\ + a_{13}b_{31} \end{pmatrix} & \begin{pmatrix} a_{11}b_{12} + a_{12}b_{22} \\ + a_{13}b_{32} \end{pmatrix} & \begin{pmatrix} a_{11}b_{13} + a_{12}b_{23} \\ + a_{13}b_{32} \end{pmatrix} \\ \begin{pmatrix} a_{21}b_{11} + a_{22}b_{21} \\ + a_{23}b_{31} \end{pmatrix} & \begin{pmatrix} a_{21}b_{12} + a_{22}b_{22} \\ + a_{23}b_{32} \end{pmatrix} & \begin{pmatrix} a_{21}b_{13} + a_{22}b_{23} \\ + a_{23}b_{33} \end{pmatrix} \\ \begin{pmatrix} a_{31}b_{11} + a_{32}b_{21} \\ + a_{33}b_{31} \end{pmatrix} & \begin{pmatrix} a_{31}b_{12} + a_{32}b_{22} \\ + a_{33}b_{32} \end{pmatrix} & \begin{pmatrix} a_{31}b_{13} + a_{32}b_{23} \\ + a_{33}b_{33} \end{pmatrix} \end{pmatrix}$$

Exercise: Construct  $AB^T$ ,  $\mathbf{u}^T A \mathbf{v}$ , etc.

# Application of interest

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Strategy Serial Parallel

Results

Comments and future work • Concentrate on  $a_{ijkt} = b_{ijef} c_{ktef}$ .

- Actually, code works for  $w_{a_1 a_2 \dots a_m b_1 b_2 \dots b_n} = u_{a_1 a_2 \dots a_m c_1 c_2 \dots c_p} v_{b_1 b_2 \dots b_n c_1 c_2 \dots c_p}.$
- Assume a k-index transformation:

$$v_{i_1 i_2 \dots i_k} = \sum_{j_1 j_2 \dots j_k = 1}^{M} z_{i_1 j_1} z_{i_2 j_2} \dots z_{i_k j_k}$$

- Call z the characteristic matrix.
- Trade-off between storage and computation time.

### Two ways to construct serial algorithm

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

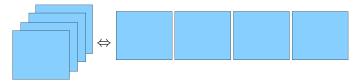
Introduction

Strategy Serial Parallel

Results

Comments and future work

- Our strategy: element-by-element multiplication.
  - Easier to read and analyze.
  - Easier to extend to arbitrary-rank, arbitrary-reduction.
- Another strategy: Unwrap the tensors.



- Tensor operations become block-matrix multiplications.
- Can use BLAS to compute.

### Implementation in C++

bryTensor class description

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Strategy Serial Parallel

Results

Comments and future work

#### Data

Tensor Double-precision, not allocated until needed.

Char. matrix Double-precision, not allocated until needed.

Statistics Dimensions, ranks, tags, etc.

Mods Cumulative products used for indexing.

#### Operations

 ${\color{red}\mathsf{Load}/\mathsf{resize}}\ \ \mathsf{Load}\ \mathsf{tensor}\ \mathsf{or}\ \mathsf{characteristic}\ \mathsf{matrix}\ \mathsf{from}\ \mathsf{file},\ \mathtt{double}$ 

\* variable, etc. Resize necessary for parallel version.

Formation Form piece of tensor from characteristic matrix.

Product Overwrites current tensor with product of two others.

Arguments: pointers to tensors, # reductions.

### **Parallelization**

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introductio

Strateg Serial

Parallel

Results

Comments and future work Multiplying  $w_{a_1 a_2 \dots a_m b_1 b_2 \dots b_n} = u_{a_1 a_2 \dots a_m c_1 c_2 \dots c_p} v_{b_1 b_2 \dots b_n c_1 c_2 \dots c_p}$ .

#### Assumption

- Each processor can hold one row of u, v and w.
- A row: u(i,:,:,...,:).
- In index notation for rank-3 tensor:  $u_{2jk}$ .
- If u and v have 128 rows each, then each processor must be able hold  $1/128^3 \approx 1/(2.1 \cdot 10^6)$  of problem.

Divide rows of u among processors, then divide rows of v among processors assigned to each row of u.

Notation:  $N_u$ ,  $N_v$  are rows of u, v, respectively; P is number of processors.

A Parallel Implementation of Tensor Multiplication

Bryan Rasmussen

Introduction

Strategy Serial Parallel

Results

Comments and future work

- Each processor gets all of v.
- Each processor gets one or more rows of *u*.
  - If  $N_u = 10$ , and P = 4, then 2 processors would get 2 rows and 2 processors would get 3 rows.
- Start row of *u* assigned to processor *n*:

$$n \lfloor N_u/P \rfloor + \min \{n, (N_u \mod P)\}$$

• Number of rows of *u* assigned to processor *n*:

$$\lfloor N_u/P \rfloor + \left\{ \begin{array}{ll} 1 & n < (N_u \bmod P) \\ 0 & \text{otherwise} \end{array} \right.$$

A Parallel Implementation of Tensor Multiplication

Bryan Rasmussen

Introduction

Serial Parallel

Results

Comments and future work

ullet Each processor is assigned to one row of u.

- Each processor gets one or more rows of v.
  - If  $N_u=4$ , and P=10, then 6 processors would get  $\approx 1/3$  of v, and 4 processors would get  $\approx 1/2$  of v.
- Processor n is assigned to following row of u:

$$\mathsf{row} = \left\{ egin{array}{ll} n/(d+1) & n < m(d+1) \ m+rac{n-m(d+1)}{d} & n \geq m(d+1) \end{array} 
ight.$$

where  $m = (P \mod N_u)$ , and  $d = \lfloor P/N_u \rfloor$ .

# $P >= N_u$ (continued)

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Serial

Parallel

Result

Comments and future work What piece of v does processor n get? Define

• Q: Number of processors on current row:

$$Q = \begin{cases} d+1 & n < m(d+1) \\ d & n \ge m(d+1) \end{cases}$$

• q: Rank of processor n in that list of processors

$$q = \begin{cases} n \bmod (d+1) & n < m(d+1) \\ [n-m(d+1)] \bmod d & n \ge m(d+1) \end{cases}$$

• Then the first row of v that processor n operates on is

$$q \lfloor N_{\nu}/Q \rfloor + \min \{q, (N_{\nu} \mod Q)\}$$

• The number of rows of v that processor n operates on is

$$\lfloor N_{\nu}/Q \rfloor + \left\{ egin{array}{ll} 1 & q < (N_{
u} mod Q) \ 0 & ext{otherwise} \end{array} 
ight.$$

## Distribution, $N_u = 6$ , $N_v = 5$ , P = 4

A Parallel Implementation of Tensor Multiplication

Bryan Rasmussen

Introduction

c. .

Serial

Parallel

Result

Comments and future work

| Rows $u$ |   | Rows $v$ |   |   |   |   |
|----------|---|----------|---|---|---|---|
| 0        | × | 0        | 1 | 2 | 3 | 4 |
| 1        | × | 0        | 1 | 2 | 3 | 4 |
| 2        | × | 0        | 1 | 2 | 3 | 4 |
| 3        | × | 0        | 1 | 2 | 3 | 4 |
| 4        | × | 0        | 1 | 2 | 3 | 4 |
| 5        | × | 0        | 1 | 2 | 3 | 4 |

### Distribution, $N_u = 6$ , $N_v = 5$ , P = 14

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

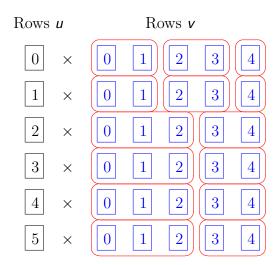
Stratom

Serial

Parallel

Result

and future work



## Implementation issues

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Strategy Serial Parallel

Results

Comments and future work Consider two examples:

$$P = 1000, N_u = 1000$$

- Each processor is assigned to 1 row of *u*
- ullet Each processor operates on all of v.

$$P = 1999, N_u = 1000$$

- Each processor is assigned to 1 row of *u*.
- Each of 1998 processors operates on  $\approx 1/2$  of v.
- One processor operates on all of v.

We have basically doubled the number of processors, but computation time is the same! Moral of the story:

- If  $P \geq N_u$ , increase P by multiples of  $N_u$ .
- If  $P < N_u$ , increase P by integer divisions of  $N_u$ .

### Timing, $u = y \times 32 \times 32 \times 32$ , $v = y \times 32 \times 32 \times 32$

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

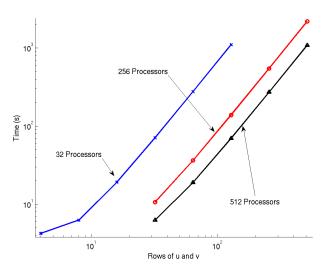
Introduction

Strateg Serial Parallel

Results

Comments and future work





### Timing, $u = \overline{y \times 16 \times 16 \times 16}$ , $v = y \times \overline{16 \times 16 \times 16}$

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

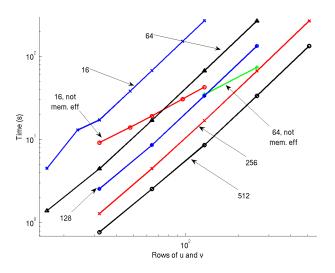
Introduction

Strategy Serial Parallel

Results

Comments and future work

### Exponents $\,\approx 1.99$ and 1.11



### Timing, $u = y \times 16 \times 16 \times 16$ , $v = y \times 16 \times 16 \times 16$

A Parallel Implementation of Tensor Multiplication

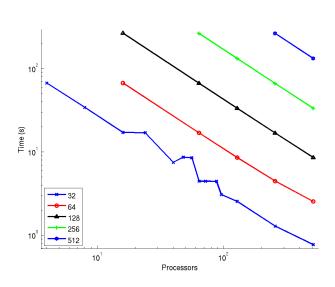
Bryan Rasmusser

Introduction

Strategy Serial Parallel

#### Results

Comments and future work



### Timing, $u = y \times 32 \times 32 \times 32$ , $v = y \times 32 \times 32 \times 32$

A Parallel Implementation of Tensor Multiplication

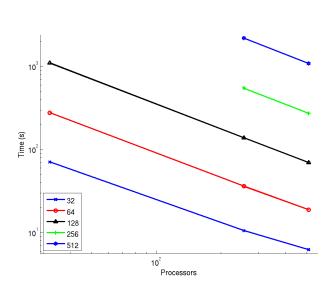
Bryan Rasmusser

Introduction

Strategy Serial Parallel

#### Results

Comments and future work



### Comments

A Parallel Implementation of Tensor Multiplication

Bryan Rasmusser

Introduction

Strategy Serial Parallel

Results

Comments and future work

#### Current algorithm

- Pretty good memory savings.
- Pretty good general algorithm.
- Lots of useful serial and MPI functions.
- Application will dominate storage/communication.
  - What do we do with this beast?
- Divergent behavior between memory-efficient mode and non-memory efficient mode when  $P > N_u$ .
- All in all, scales very well.

# Comments (continued)

A Parallel Implementation of Tensor Multiplication

Bryan Rasmussen

Introduction

Strategy Serial Parallel

Results

Comments and future work

#### Future work

• Look at symmetry in *k*-index transformation:

$$v_{i_1 i_2 \dots i_k} = \sum_{j_1 j_2 \dots j_k = 1}^{M} z_{i_1 j_1} z_{i_2 j_2} \dots z_{i_k j_k}$$

- Unwrap tensors and use the BLAS?
- Consider more optimal splitting strategy.
- Augment MPI calls with threads for better serial performance.
- Extend to different orders of indices.